

• Utilisation of Waste Streams for Bioproducts and Bioenergy

http://www.biorefine2g.eu

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°613771.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

Replacing the oil barrel

1st and 2nd generation feedstocks bioREFINE-26

1st and 2nd generation feedstocks bioREFINE-26

- C6 and C5 sugars
- lignin
- inhibitors

Reduction of GHG emissions

 IEA future estimates, based on a review of recent studies (Source: acc. to Wang et al, Env. Res. Letters, Vol. 2, 024001, May 22, 2007)

** optimized next generation plants

Koltermann et al (2014) "Cellulosic Ethanol from Agricultural Residues – An Advanced Biofuel and Biobased Chemical Platform". *JSM Biotechnol Bioeng* 2(1): 1024.

Commercialized yeast fermentation processes

Borodina & Nielsen (2014) "Advances in metabolic engineering of yeast *Saccharomyces cerevisiae* for production of chemicals". *Biotechnol J* 9(5):609-20.

BioREFINE-2G

Biorefinery workflow

Industrial yeast engineered for xylose utilization

Stovicek et al. "EasyClone 2.0: Expanded toolkit of integrative vectors for stable gene expression in industrial *S. cerevisiae* strains". *J Ind Microbiol Biotechnol*, 1:13.

biorefine-26

Adaptive Laboratory Evolution for strain performance in Hardwood SSL

➤ No growth in >20% Hardwood SSL at low pH

Adaptive Laboratory Evolution for DIOREFINE-20 strain performance in hardwood **SSL** 10 20 35 50 70 80 90 90% SSL 10 % SSL \sim C_{Hardwood SSL} (%) $\mu_{max} \ 0.05 \ h^{\text{-1}}$ UNIVERSITY 80 20 80 % 80 % 60 % 60 %

Downstream Processing

Polymer-Grade Fumaric Acid from Fermented SSL

Novel polymers - fumaric

Target compound

Novel polymers - glutaric

PLA-Glutaric Copolymers

+

Glutaric Copolymers

Lactide

DEL PLÁSTICO

Novel polymers

Polyurethane-derived products

Waterborne Polyurethane Dispersion (PUDs)

- -Coatings and adhesives that use water as the primary solvent.
- Ecological material.
- -Wide adhesion range and excellent stability values.
- Preparation of crystalline PUDs that adhere by melting.
- Application in flooring, fabric, leather, metal, wood, automotive...

Life Cycle Analysis

+Good social performance on wood treatment and fermentation plant

+Requires fewer fossil resources than conventional synthesis

+Use of waste streams prevents conflicts with food and feed production

- Cost competitiveness requires high yields
- Conditioning of bio waste streams requires additional efforts
- Agriculture related impacts (land use, eutriphication...) higher than conventional synthesis

ifu hamburg material flows and software.

BioREFINE-2G Exploitation Flyers

Development of 2nd Generation

Biorefineries - Production of

Dicarboxylic Acids and Bio-based

- 1) DTU: Robust xylose-utilizing industrial yeast
- 2) DTU: Genetic engineering toolbox for manipulation of industrial yeast strains
- 3) BIOTREND: Fumaric acid purification process from fermented lignocellulosic wastes
- AIMPLAS: Novel polymerization methods by reactive extrusion to obtain new PLA-Copolymers with enhanced properties
- 5) ECOPOL: Polyesther synthesis in batch and reactive extrusion
- 6) IFU: Integrated Life-Cycle-Sustainability-Assessment

EXPLOITABLE FOREGROUND

www.biorefine2g.eu

Development of 2nd Generation Biorefineries Production of Dicarboxylic Acids and Bio-based Polymers Derived Thereof

Project activities

Strain development

Process Development

Polymerization Methods

Scale up, Product Development and Final Validation

Life Cycle Analysis

Dissemination and Exploitation

Home

Welcome to BioREFINE-2G

The existing 2nd generation biorefineries utilize less than 20% of the biomass feedstock for ethanol production, and major side-streams are produced such as pentose and lignin waste streams, that are respectively used for biogas and energy production.

Converting the carbon from these waste streams into added-value products would increase the otherwise low profitability and improve the environmental benefits of the biorefineries. The suggested project **BioREFINE-2G** aims at developing commercially attractive processes for efficient conversion of pentose-rich side-streams from biorefineries into dicarboxylic acids. which can

News & Events

New BioREFINE-2G Flyer available (October 2016)

7th BioREFINE-26 Consortium Meeting

Munich, Germany 15-16 September 2016

6th BioREFINE-26 Consortium Meeting

Thank you for your attention !

Irina Borodina irbo@biosustain.dtu.dk

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°613771. The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.