

DEVELOPMENT OF POLYMERIZATION METHODS

11th International Conference on Renewable Resources & Biorefineries June 5, 2015, York (UK)

Dr. Amador García-Sancho Dr. Josep Rocas Sorolla

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°613771.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.

OUTLINE

- Presentation of our companies.
- Polymers and biopolymers.
- Polyester and copolymer synthesis:
 - Synthetic approach
 - Characterization
 - Results (polyesters, extensions with lactide, PUDs)
- Conclusions & future work

Ecopol Tech

• Technological company born in 2005, based on the R&D Experience in **Polymer Chemistry** of its promoter, Dr. Josep Rocas.

• It is located in the Technological Park EL FOIX, just between Barcelona and Tarragona. Close to chemical industrial hubs and plastic industries.

• The company is split into two different industrial units and is currently composed of 14 people.

Ecopol Tech

Ecopol Tech

Industrial Applications

Adhesives, coatings, additives, reactive polymers, nanofoams...

Cosmetic Science

Encapsulated actives: fragrances, antioxidants, anti-aging agents; reactive polymers for hair care...

Pharma Science

Encapsulation of anticancer, antimicrobial, antifungal drugs for selective delivery systems

Biodegradable

What is AIMPLAS?

AIMPLAS is a **Technology Centre** with more than 25 years of experience helping companies in the plastic sector

AIMPLAS STAFF

We are a team of more than 110 highly qualified professionals

AIMPLAS RESOURCES

Over 8,500 m² facilities with state-of-the-art equipment and instrumentation

AIMPLAS FIGURES

2014 DATA

70% of incomes from R+D projects. 32 EU ongoing projects

OUR CONTRIBUTION IN BIOREFINE-2G PROJECT

-Market overview -New polymers/process -New characterization tools

European Plastics Industry

- In 2013 the European Plastics Industry employed more than 1,400,000 people.
- Turnover of plastic industry is 300 billion Euros.

Estimated data for EU-27 (excl. N/CH), 2012 Source: Consultic

European Plastic Demand

- Polyolefin markets represents 50% of polymer demand.
- Polyesters represent 10% (7% PET) of demand.
- Polyurethane represent 8% of demand.
- PVC represent 11% of demand.

European Plastic Demand I

Plastics, the Facts 2013

European Plastic Demand

Plastics, the Facts 2013

Bioplastic concept:

Whole **family of materials** which differ from conventional plastics insofar as that they are **biobased, biodegradable**, or both. Biobased means that the material or product is (partly) derived from biomass (plants).

European Bioplastics Org.

Why Bioplastics?

- Save fossil resources by using biomass
- Biodegradability is an add-on
- PLA market 2-3000 \$ mln.

(2014 marketsandmarkets).

European bioplastics

Why not Bioplastics (according customers)

- Mechanical properties
- Price
- Lack of regulation

Bioplastics industrial barriers?

- Improve mechanical properties.
 - Chemical design and use of additives.
- Develop high efficient processes as in oil plastic industry.
 - New processes as REX.

Polymer synthesis (Classical approach)

-Solvent process.

-Management of high viscose products.

-Long reaction times as viscosity increase.

Reactive extrusion.

REX is a manufacturing method that combines the traditionally separated chemical process (polymer synthesis and/or modification) and extrusion (melting, blending, structuring, de-volatilization and shaping)

Lambla, M.; Macromolecular Symposia 1994, 83, 37-48

Polymerization methods

Reactive extrusion.

- -Free solvent process.
- -Fast process (3-10 minutes synthesis is carried out)
- -Better management of high viscose products.
- -Water can be removed due high temperature and devolatilization.

-Requires previous knowledge of polymerization reaction in solution.

MAIN GOALS:

Synthesis of polyester with dicarboxilic acid from yeast

• Very low acid number (max 0.2 mg KOH/g)

Other opportunities: PLA cop

-Development of PLA copolymers from diacids with enhanced properties lead us to get access to a market **2-3000 \$ mln. (2014 marketsandmarkets).**

-PLA MARKET is expected to reach 5000-6000 \$ mln in 2019 (European Bioplastics estimation).

-Development of efficient process to obtain monomers and polymers derived from PLA with "enhanced" properties.

MAIN OPORTUNITY, fut

OUR APPROACH is divided the process into two steps:

1st STEP: condensation reaction (esterification) between diacid and diol with loss of water \rightarrow obtain the minimum acid number:

2nd STEP: **'transesterification**' between different polyol-polyester chains to increase the **molecular weight** of the final polyester. Use of a catalyst.

Synthesis of polyesters at lab-scale bioREFINE-20

Characterization

During and after reaction

• Correct ester bond formation by FT-IR:

Fig. 1: FT-IR spectra of polyester synthesis over time

Synthesis of polyesters at lab-scale bioREFINE-20

Characterization

• Following the reaction by **acid number determination**: (acid-base titration)

Fig. 2: acid number of the polyester sample over time

Most representative polyesters and characterization values:

	POLYESTER	OH:COOH ratio	MELTING POINT (º C)	ACID NUMBER (mg KOH/g)	HYDROXYL NUMBER (M2) (mg KOH/g)	CALCULATED MW (g/mol)
€00 Ø Ø ● ● ● 2014	EURO16 (diacid1)	1.51:1	35-40	0.91	46.69	2357.14
200 D D 0 2234	EURO17 (diacid1)	1.50:1	52-56	1.25	12.54	8139.28
€00 Ø Ø ●● ● ₽29.4	EURO18 (diacid1)	1.49:1	60-65	0.40	132.18	846.25
200 Ø Ø • • 294	EURO19 (diacid1)	2.24:1	35-40	1.60	84.34	1305.5
€00 ØØ ●●	EURO21 (diacid1)	1.29:1	35-40	0.37	18.07	6089.92

Very low acid number close to commercial (0.2 mg KOH/g)

Most representative polyesters and characterization values:

	POLYESTER	OH:COOH ratio	MELTING POINT (≌ C)	ACID NUMBER (mg KOH/g)	HYDROXYL NUMBER (M2) (mg KOH/g)	CALCULATED MW (g/mol)	
00000000000000000000000000000000000000	EURO22 (diacid2)	1.20:1	>125	-	-	-	*
se: ØØ • €294	EURO23 (diacid1)	1.15:1	60-65	0.39	41.64	2669.52	
2000 00 000 - 2024	EURO24 (diacid2)	1.10:1	>125	-	-	-	*
000 Ø Ø 00 294	EURO25 (diacid1)	1.12:1	35-40	0.426	To be determined	To be determined	

Due to premature crosslinking problems, we have not been able to fully characterize some diacid-based polyesters. Some changes of synthetic approach are currently being considered.

EXPLORING OTHER POSSIBILITIES WITH BIOPOLYESTERS FOR REX SYNTHESIS.

o lactide	+ BIOPOLYESTE	ER	→ PLA-BIO	POLYES	TER-PLA
	AIMPLAS REF	MW of sm	Ratio lactide/SM	PLÁSTICO MW theor	NOLÓGICO MW nmr
	PRO12-0319-10-01	2111,4	10,2	28475	26802
	PRO12-0319-10-02	2111,4	8,7	29588	28050
	PRO12-0319-10-03	2111,4	6,5	18146	17205
	PRO12-0319-10-04	2111,4	15,0	41875	39870
	PRO12-0319-10-05	2111,4	20,0	55883	50502

EXPLORING OTHER POSSIBILITIES WITH BIOPOLYESTERS:

lactide + BIOPOI	LYESTER	PLA-BIOPO	DLYESTER-PLA MPLAS UTO TECNOLÓGICO ÁSTICO
AIMPLAS REF	Ecopol Tech SM	MW of sm	MW theor
PRO12-0319-09-01	Europeu18	846,25	20950
PRO12-0319-09-02	Europeu18	846,25	41042
PRO12-0319-09-03	Europeu18	846,25	63155
PRO12-0319-08-01	-	8139,28	39962
PRO12-0319-08-02	-	8139,28	70483

RATIO in MW of both polymer is the key factor

EXPLORING OTHER POSSIBILITIES WITH BIOPOLYESTERS:

199

COMERCIAL OPORTUNITIES IN BIOREFINE-2G PROJECT

Application of the bio-based polyesters to prepare commercially interesting products: POLYURETHANE POLYMERS

• Waterborne Polyurethane Dispersion (PUDs)^{5,6}

- Coatings and adhesives that use water as the primary solvent.
- Ecological material.
- High solids content with low viscosity.
- Wide adhesion range and excellent stability values.
- Preparation of crystalline PUDs that adhere by melting.
- Application in flooring, fabric, leather, metal, plastics, wood, automotive...

Fig. 2: PUD film ²

2 http://purpatents.com/2014/07/29/polyurethane-dispersions-with-reversible-drying/

Application of the bio-based polyesters to prepare commercially interesting products: PLA CO-POLYMERS

• Flexible PLA-Copolymers

- Films with high flexibility
- Ecological material.
- High transparency
- Low processing temperature
- Packaging sector.
- -Chemical companies are interested

Ongoing & future work

• Improve the results in terms of acidity and molecular weight. Possible changes:

-Changing the **catalyst**. Try with metallic oxides like Zr(OBu)4, and GeO₂ and special additives. Rare earth metals derivatives. Bismuth based compounds.

• Consider the use of **lipases** instead of organometallic catalysts. In this case, lower reaction temperatures should also be used.

• Develop reactive extrusion for polyesters and PLA-polyesters.

Conclusions

• A wide range of polyesters have been prepared under different conditions. Diol:diacid ratio, temperature ramp, type and dose of catalyst, vacum/N₂ cycles have been tested in order to obtain **LOW ACID NUMBER POLYESTERS** (the lowest is around 0.35 mg KOH/g) **COMERCIAL GRADE POLYESTERS**.

•AIMPLAS has developed new copolymers of the polyester with lactide. New products have been prepared with improved properties compared to the initial polyester and poly-lactic acid. PLA COPOLYMERS WITH ENHANCED PROPERTIES.

• A new method has been developed to prepare polyurethane dispersions out of these bio-based polyesters (diacid1). Interesting properties have been found \rightarrow LOW MELTING POINT ADHESIVES (around 40 °C).

Thank you for your attention !!

Alba Ortiz Álvarez Rocío Gómez Carrie Amador García Sancho (amgarcia@aimplas.es)

Cristina Cuscó Marigó Gabriel Carbó Chicón Berta Solé Porta Pau Rocas Alonso Josep Rocas Sorolla (director)

This project is co-funded by the European Union within the 7th Frame Programme. Grant Agreement n°613771.

The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein.