EXPLOITABLE FOREGROUND

Genetic engineering toolbox for manipulation of industrial yeast strains

Explanation and Purpose

Polyploid industrial strains of Saccharomyces cerevisiae can be rapidly engineered using the provided genetic toolbox. The toolbox comprises a set of integrative vectors that target eleven specific well-characterized genomic locations. The vectors allow for selection in prototrophic yeast strains using six different dominant selection markers. The markers can subsequently be removed using loxP/creA recombination. Alternatively, the integration is ensured by CRISPR/Cas9 system. The vectors allow for efficient overexpression of multiple genes.

CRISPR/Cas vectors can also be employed for gene deletions and other genome edits, including combinations of several different genome edits in a single transformation event.

Exploitation Strategy

The vector toolbox has been distributed to 30+ academic and industrial laboratories. The vectors are available for research use via public despository – Addgene, including user guidelines:

https://www.addgene.org/kits/borodina-easyclone-v2/

https://www.addgene.org/kits/borodina-easyclone-markerfree/

https://www.addgene.org/browse/article/22359/

For commercial use, the standard terms of Technical University of Denmark apply.

Detailed description of the toolbox is included in the following research papers:

- Stovicek V., Borodina I., Forster J. (2015): CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metabolic Engineering Communications 2:13-22
- Stovicek V., Borja G., Forster J., Borodina I. (2015): EasyClone 2.0: Expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains. Journal of Industrial Microbiology and Biotechnology 42(11):1519-1531
- 3. Jessop-Fabre MM, Jakočiūnas T, Stovicek V, Dai Z, Jensen MK, Keasling J, Borodina I. (2016): EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into *Saccharomyces cerevisiae*. *Biotechnol J* 1(8):1110-1117

IPR Measures

For commercial exploitation, refer to general CRISPR patents (if any) in the given country.

Impact of Exploitation

Industrial strains of S. cerevisiae can be engineered rapidly and efficiently using the developed genetic toolbox.

Development of 2nd Generation Biorefineries - Production of Dicarboxylic Acids and Bio-based Polymers Derived Thereof

Contact for Exploitable Result

Technical University of Denmark Center for Biosustainability Dr. Jens William Kindtler, CBO jwki @biosustain.dtu.dk

Project Coordination

The Novo Nordisk Foundation Center for Biosustainability, DTU, Denmark Dr. Irina Borodina irbo @biosustain.dtu.dk

Project Dissemination

WIP Renewable Energies, Germany Dr. Rainer Janssen *rainer.janssen@wip-munich.de*

www.biorefine2g.eu

BioREFINE-2G is co-funded by the European Commission in the 7th Framework Programme (Project No. FP7-613771)